Dynamic profiling of double-stranded RNA binding proteins
نویسندگان
چکیده
منابع مشابه
Dynamic profiling of double-stranded RNA binding proteins
Double-stranded (ds) RNA is a key player in numerous biological activities in cells, including RNA interference, anti-viral immunity and mRNA transport. The class of proteins responsible for recognizing dsRNA is termed double-stranded RNA binding proteins (dsRBP). However, little is known about the molecular mechanisms underlying the interaction between dsRBPs and dsRNA. Here we examined four h...
متن کاملSubstrate Recognition and Specificity of Double-Stranded RNA Binding Proteins
Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRN...
متن کاملATP-independent diffusion of double-stranded RNA binding proteins.
The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replicatio...
متن کاملRNA recognition by a Staufen double-stranded RNA-binding domain.
The double-stranded RNA-binding domain (dsRBD) is a common RNA-binding motif found in many proteins involved in RNA maturation and localization. To determine how this domain recognizes RNA, we have studied the third dsRBD from Drosophila Staufen. The domain binds optimally to RNA stem-loops containing 12 uninterrupted base pairs, and we have identified the amino acids required for this interact...
متن کاملDUF283 domain of Dicer proteins has a double-stranded RNA-binding fold
Two RNases, Dicer and Argonaute, are at the heart of the RNA interference (RNAi) molecular machinery responsible for gene silencing. Both RNases contain multiple domains, most of which have been characterized or have functions that can be predicted based on sequence comparisons. However, Dicers of higher eukaryotes contain the domain known as DUF283 which at present has no assigned role. Using ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2015
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gkv726